HSC Physics - Module 5: Advanced Mechanics - Motion in Gravitational Fields Short Answer Question Solutions 3

21. (a)

Criteria	Marks
\bullet Substitutes into correct equation to calculate the orbital speed	2
\bullet Attempts to calculate the orbital speed using the correct formula OR	1
\bullet Correctly converst the time into seconds	

Sample answer:
$t=7$ hours 39 minutes $=(7 \times 3600)+(39 \times 60)=27540 \mathrm{~s}$
$r=9.5 \times 10^{6} \mathrm{~m}$
$v=\frac{2 \pi r}{T}=\frac{2 \pi\left(9.5 \times 10^{6}\right)}{27540}=2167.402 \ldots=2.2 \times 10^{3} \mathrm{~ms}^{-1}$
(b)

Criteria	Marks
Response includes reference to the following points: - Relates atmospheric thickness at lower altitudes to greater air resistance on satellites in LEO - Relates air resistance on satellite to a decrease in its orbital speed (or heat and kinetic energy) - Relates a decrease in orbital speed (or kinetic energy) to a decrease in altitude OR - Relates cause and effect to two different issues such as air resistance and tracking stations	3
Response includes most of the above points	2
Response includes one of the above points	1

Sample answer:

Satellites in low Earth orbits are affected by air resistance because the atmosphere is thicker near the Earth's surface due to gravity. The air resistance causes the satellites orbital speed to decrease. This decrease in speed causes the satellite to decrease in altitude. (As the satellite drops in altitude the atmosphere is even thicker so provides greater air resistance on the satellite slowing it down even further. The heating effects associated with such air resistance can cause a satellite to eventually burn up.
(c)

Criteria	Marks
\bullet Correctly calculates the orbital radius	2
\bullet Attempts to calculate the orbital radius	1

Sample answer:
$\mathrm{T}=24$ hours $=24 \times 3600=86400 \mathrm{~s}$
$M=6.0 \times 10^{24} \mathrm{~kg}$
$\frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$
$\frac{r^{3}}{86400^{2}}=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{4 \pi^{2}}$
$r=42297523.87 \ldots$
$=4.2 \times 10^{7} \mathrm{~m}$
22. (a)

Criteria	Marks		
- \quadIdentifies that the astronauts in the ISS are still within the gravitational field of the Earth, hence as they have mass they still have a weight. - Identifies that the astronauts will feel the sensation of being 'weightless' as they are in free fall around the Earth Response includes a correct assessment of the validity, justified based on the reasoning presented	3		
-Identifies that the astronauts in the ISS are still within the gravitational field of the Earth, hence as they have mass they still have a weight OR	2		
-Identifies that the astronauts will feel the sensation of being 'weightless' as they are in free fall around the Earth			
- Response includes a correct assessment of the validity, justified based on the			
reasoning presented		\quad	Identifies that the astronauts in the ISS are still within the gravitational field of
:---			
the Earth, hence as they have mass they still have a weight OR			
- Identifies that the astronauts will feel the sensation of being 'weightless' as they			
are in free fall around the Earth			

(b)

Criteria	Marks
\bullet Correct answer with correct formula substitution and units	3
\bullet Correct substation with convert km $\rightarrow \mathrm{m}$	2
\bullet Answer provided with one error OR	1
• Incorrect substitution	

$F=G \frac{m_{1} m_{2}}{d^{2}}$
$\frac{F}{m_{1}}=a=G \frac{m_{\text {planet }}}{d^{2}}$
$=6.67 \times 10^{-11} \times \frac{2.50 \times 10^{24}}{\left(4.00 \times 10^{8}\right)^{2}}$
$=1.04 \times 10^{-3} \mathrm{~ms}^{-1}$
23. (a)

Criteria	Marks
\bullet Correct answer calculated. (units not graded)	2
\bullet Correct substitution or error made with metric conversion	1

$T=2 \times 60 \times 60=7200 \mathrm{~s}$
$\frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$
$r=\sqrt[3]{\frac{G M}{4 \pi^{2}} \times T^{2}}$
$=\sqrt[3]{\frac{\left(6.67 \times 10^{-11}\right)\left(6.0 \times 10^{24}\right)}{4 \pi^{2}} \times 7200^{2}}$
$=8.1 \times 10^{6} \mathrm{~m}$

HSC Physics - Module 5: Advanced Mechanics - Motion in Gravitational Fields Short Answer Question Solutions 3

(b)
$F=\frac{G m_{1} m_{2}}{d^{2}}$
$=6.67 \times 10^{-11} \times \frac{\left(4.00 \times 10^{2}\right) \times\left(6.0 \times 10^{24}\right)}{\left(8.07 \times 10^{6}\right)^{2}}$
$=2.46 \times 10^{3} \mathrm{~N}$

Note: allow carry-over error from part (a)

(1 mark for correct formula selection and substitution, and one mark for correct answer. Direction not necessary to gain full marks)
(c)

Criteria	Marks
\bullet All appropriate reasons given	2
\bullet One appropriate reason given	1

Sample answer:

Satellite's orbit is circular and the net force (gravitational force) is always perpendicular to the direction of motion and directed to the centre of the Earth, i.e. the centre of the orbital path. (ie, the gravitational force provides the necessary centripetal force, directed towards the centre of the Earth)
(d)

Criteria	Marks
\bullet Describing that an empty stage can be abandoned and less mass to carry	1

Sample answer:

Once the fuel inside a rocket motor is exhausted, the motor is 'dead-weight', and a great deal of energy would be wasted to carry it further, so the 'stage' is allowed to drop away.
24.

Marking Criteria	Marks
\bullet Both changes described	2
\bullet One change described or both changes (period and radius) identified	1

To achieve a shorter period (travel faster) to keep up with Earth's rotation, the orbital radius of geostationary satellites would be reduced.
25. (a)

Marking Criteria	Marks
\bullet Gives the correct answer	2
\bullet Answer involves one error in working	1

Radius of orbit $=3700 \mathrm{~km}=3.7 \times 10^{6} \mathrm{~m}$
$\frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$
$\frac{\left(3.7 \times 10^{6}\right)^{3}}{T^{3}}=\frac{6.67 \times 10^{-11} \times 6.42 \times 10^{23}}{4 \pi^{2}}$
From whence we derive $T=6833.6 \mathrm{~s}$
(b)

Marking Criteria	Marks
\bullet Gives the correct answer	3
\bullet Error in working (especially wrong mass or radius used) or left out direction	2
\bullet Makes two errors in working	1

Using $C=2 \times r=2 \times\left(3.7 \times 10^{6}\right)=2.32 \times 10^{7} \mathrm{~m}$ (the distance travelled by the MRO). Now to determine the velocity, use this figure and the answer from part (a):
$v=\frac{d}{t}=\frac{2.32 \times 10^{7}}{6833.6}=3395 \mathrm{~ms}^{-1}$
Now find the centripetal force using
$F=\frac{m v^{2}}{r}$
$=\frac{1030 \times 3395^{2}}{3.7 \times 10^{6}}=3209 \mathrm{~N}$
Note there are Alternative approaches:

Alternative approach \#1:
$v=\sqrt{\frac{G M}{r}}$
$V=3401.96 \mathrm{~ms}^{-1}$
Then use $F_{c}=\frac{m v^{2}}{r}$
$\mathrm{F}=3221.8 \mathrm{~N}$

Alternative approach \#2:
Equate gravitational force with centripetal force
$F_{c}=F_{G}$
$\frac{m v^{2}}{r}=\frac{G m_{1} m_{2}}{d^{2}}$
This will give $\mathrm{F}=3221.7 \mathrm{~N}$

Marking Criteria	Marks
- sound understanding of relevant factors and relationships evident - appropriate energy formulae referred to - Logical presentation	3
- basic understanding of the relevant factors and relationships evident, - some appropriate formulae identified	2
- Some understanding of a relevant concept evident (such as quoting the escape velocity formula)	1

26.

Sample answer: For a spacecraft to escape Earth's gravitational field it must either: possess sufficient kinetic energy, $E_{k}=1 / 2 m v^{2}$, so that it can gain gravitational potential energy, $\mathrm{sefi} \mathrm{E}_{\mathrm{p}}=-\mathrm{Gm} m_{1} / \mathrm{r}$ of at
least zero ; or be able to propel itself with sufficient fuel so that it can "climb up" to a potential energy of zero. For a projectile at launch, EK equal to or greater than $\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}$.

Alternative approach: Discuss the factors involved in achieving escape velocity as outlined in the escape velocity formula. BUT...candidates still need to discuss energy factors, as this is explicitly asked for in the question.
27. (a)

Criteria	Marks
\bullet Correct answer	1

Gravity is the force.
(b)

Criteria	Marks
\bullet Complete solution using both F(centripetal) and F(Gravity)	2
\bullet Partial solution using either F(centripetal) and F(gravity)	1

F (centripetal) and F (gravity) becomes $m\left(\frac{v^{2}}{r}\right)=G M\left(\frac{m^{2}}{r}\right)$
Simplifies to $v^{2}=\frac{G M}{r}$
Giving $v=\left(\frac{G M}{r}\right)^{\frac{1}{2}}$
28.

Criteria	Marks
- Correct formula, correct substitution, correct answer	3
- Correct formula, incorrect substitution or incorrect rounding	2
- Correct formula only	1

Sample answer:
$\frac{m_{1} v^{2}}{r}=\frac{G m_{1} m_{E}}{r^{2}}$
$v=\sqrt{\frac{G m_{E}}{r+h}}$
$=\sqrt{\frac{6.67 \times 10^{-11} .6 \times 10^{24}}{6.37 \times 10^{6}+350 \times 10^{3}}}$
$=7717.1 \mathrm{~ms}^{-1}$
$=7720 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
$=7.72 \mathrm{~km} / \mathrm{s}$ (3sf)
29.

Criteria	Marks
- Correct formula, correct substitution, correct calculation	2
- Correct formula, incorrect change of subject of formula, correct calculation	1

Sample answer:
$\frac{r_{1}^{3}}{T_{1}^{2}}=\frac{r_{2}^{3}}{T_{2}^{2}}$
$\frac{(4.2)^{2}}{(1.8)^{2}}=\frac{r_{2}^{3}}{(16.7)^{2}}$
$r_{2}^{3}=\frac{4.2^{3}}{1.8^{2}} \times 16.7^{2}$
$r_{2}=18.5$ units = distance to Calisto (from centre of Jupiter)
30.
(a) $\frac{R^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$
$T=\sqrt{R^{3} \times \frac{4 \pi^{2}}{G M}} R=3.39 \times 10^{6}+5 \times 10^{5}=38.9 \times 10^{5}$
$=\sqrt{\frac{\left(3.89 \times 10^{6}\right)^{3} \times 4 \pi^{2}}{6.67 \times 10^{-11} \times 6.42 \times 10^{23}}}$
$=7366.714 \mathrm{~s}$
$=2.04$ hours
(b) $g=\frac{G M}{r^{2}}$
$=\frac{6.67 \times 10^{-11} \times 6.42 \times 10^{23}}{38.9 \times 10^{5}}$
$=2.829 \mathrm{~ms}^{-2}$
(c)

Distance from centre
(d) $\Delta E p=m g \times h$
$=1.0 \times 10^{23} \times 2.829 \times 5.0 \times 10^{5}$
$=1.625 \times 10^{29} \mathrm{~J}$

Or
$\Delta E p=\frac{G m_{1} m_{2}}{\frac{1}{R i}-\frac{1}{R f}} \quad R i=3.39 \times 10^{6} \quad R f=(3.39+.5) \times 10^{6}$
$=1.625 \times 10^{29}$ Joules

