HSC Physics – Module 5: Advanced Mechanics – Motion in Gravitational Fields Short Answer Question Solutions 2

11. (a)

Criteria	Marks
Arrow used to indicate the force acting from the satellite is towards the centre of the	1
earth	

(b)

Criteria	Marks
Correctly calculates the initial E_p and final E_p using the appropriate radii including units	3
$(-1.209 \times 10^{14} \text{ J and } 1.164 \times 10^{14} \text{ J respectively AND the difference between the final and})$	
initial values (4.5 x 10 ¹² J)	
Calculates the initial E_p and final E_p and the difference between them but uses incorrect	2
radii (including incorrect unit conversions) OR	
Correctly calculates the initial E_p and final E_p using the appropriate radii including units	
but not the difference between them	
Correctly calculate the initial E_p and final E_p	1

12.

<u>(a)</u>	
Criteria	Marks
Correctly calculate the radius of the orbit of 55 cancri b (1.5 x 10^{10} m) and the orbital velocity (7.42 x 10^4 m s ⁻¹)	2
Corerctly calculate the radius of orbit of 55 cancri b	1

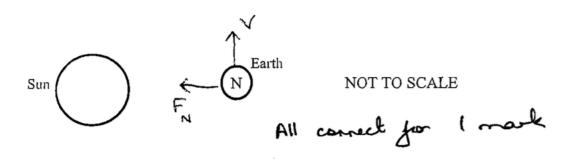
(b)

Criteria	Marks
Correct calculation of the ratio using Kepler's law of periods (441.71:1)	2
Determines the period of 55 Cancri d (6493.21 days)	1

13.

Criteria	Marks
Uses an appropriate method to calculate a mass of 5.6x1026kg	3
Correctly method of calculation in kg but with one incorrect substitution OR	2
Correct answer with incorrect units.	
Correctly method of calculation but with two incorrect substitutions.	1

14. (a) $8.78 \text{m/s}^2 1 \text{ mark}$ for correct number, 1 mark for correct unit


(b)
$$V = \left(\frac{Gm}{r}\right)^{\frac{1}{2}}$$
 1 mark
= substitution line (no carry overs paid)
= 7690 m/s 1 mark for correct value and unit

(c) $W = E_{p_{final}} - E_{p_{initial}}$ = $-\frac{Gmm}{r_f} - -\frac{Gmm}{r_i}$ 1 mark = substitution line 1 mark for correct answer and unit = 4.67 × 10⁹ J

HSC Physics – Module 5: Advanced Mechanics – Motion in Gravitational Fields Short Answer Question Solutions 2

15. a)

(b) Show your working

 $\frac{r^{3}}{T^{2}} = \frac{Gm}{4\pi^{2}} \quad \leftarrow 1 \text{ mark correct equation} \\ r^{3} = \frac{GmT^{2}}{4\pi^{2}} \\ = \frac{(6.67 \times 10^{-11} \times 2 \times 10^{30} \times 9.9452 \times 10^{14})}{4\pi^{2}} \\ r^{3} = 3.360542 \times 10^{33} \\ r = 1.5 \times 10^{11} \text{ m} \quad \leftarrow \text{ max 3 sig. figs (1 mark all correct)} \\ = 1.5 \times 10^{8} \text{ km} \end{cases}$

16. V necessary to escape Earth's gravitational field 1 mark

$$V = \sqrt{\frac{2GM}{r}}$$

= $\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{6.4 \times 10^6}}$ 1 mark
= 11,183 ms⁻¹ 1 mark

17. (a) 1.44 x 10⁶J

(b) -3.245 x 10⁶J

(c) (a) + (b) =
$$\frac{-6.67 \times 10^{-11} \times 1150 \times 1.1 \times 10^{20}}{r}$$
 (1 mark)
 $r = 4.67 \times 10^6$ m (1 mark)

18. (a)
$$g = \frac{GM}{r^2} = 0.83 \text{ m/s}^2$$

(b) $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$ (1 mark) $T = 3.24 \times 10^4$ s (9 hours) (1 mark)

(c) $\frac{GMm}{r^2} = \frac{mv^2}{r}$ (or in words) (1 mark) Hence $v = \sqrt{\frac{GM}{r}}$ which does not depend on the mass of the satellite. (1 mark)

Page 2 of 3

HSC Physics – Module 5: Advanced Mechanics – Motion in Gravitational Fields Short Answer Question Solutions 2

19. (a)

Marking Criteria	Marks
Correct effect at both locations described	2
Correct effect at either location described	1

Sample answer:

Length of day shorter thus rotation of Earth speeds up. Centripetal acceleration of v^2/r must be subtracted from 9.8 ms⁻². Thus effective "g" near equator is less, say 9.7 ms⁻². No circular motion at south pole so no effect on value of "g". OR Faster v gives equatorial bulge so r increases so g is less and at pole r decreases so g increases.

(b)

Marking Criteria		Marks
•	Both changes described	2
•	One change described or both changes (period and radius) identified	1

Sample answer:

Earth rotates faster so the satellite must also travel faster and thus it will have a shorter period to match that of the Earth. It will do so if drops to a lower orbit where "g" is greater and the speed increases to compensate.

20.

Marking Criteria	
 response provided shows evidence of proper and thorough understanding of the concepts involved, presented in a logical manner appropriate energy formulae used correctly 	4
 sound understanding of relevant factors and relationships evident appropriate energy formulae referred to 	3
 basic understanding of the relevant factors and relationships evident, some appropriate formulae identified 	2
Some understanding of a relevant concept evident	1

Sample answer:

For a spacecraft to escape Earth's gravitational field PE + KE = 0, EK= $1/2mv^2$ and gravitational potential energy, EP = $-Gm_1 m_2 / r$. This solves to give escape velocity = root 2Gm/r. It needs to propel itself with sufficient fuel so that it can "climb up" to a potential energy of zero while still having kinetic energy and thus escape and not be drawn back by Earth's gravity.

