## HSC Physics - Module 5: Advanced Mechanics - Motion in Gravitational Fields Short Answer Question Solutions 2

11. (a)

| Criteria | Marks |
| :--- | :--- |
| Arrow used to indicate the force acting from the satellite is towards the centre of the <br> earth | 1 |

(b)

| Criteria | Marks |
| :--- | :--- |
| Correctly calculates the initial $E_{p}$ and final $E_{p}$ using the appropriate radii including units <br> $\left(-1.209 \times 10^{14} \mathrm{~J}\right.$ and $1.164 \times 10^{14} \mathrm{~J}$ respectively AND the difference between the final and <br> initial values $\left(4.5 \times 10^{12} \mathrm{~J}\right)$ | 3 |
| Calculates the initial $E_{p}$ and final $E_{p}$ and the difference between them but uses incorrect <br> radii (including incorrect unit conversions) $O R$ <br> Correctly calculates the initial $E_{p}$ and final $E_{p}$ using the appropriate radii including units <br> but not the difference between them | 2 |
| Correctly calculate the initial $E_{p}$ and final $E_{p}$ | 1 |

12. 

(a)

| Criteria | Marks |
| :--- | :--- |
| Correctly calculate the radius of the orbit of 55 cancri $\mathrm{b}\left(1.5 \times 10^{10} \mathrm{~m}\right)$ and the orbital <br> velocity $\left(7.42 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}\right)$ | 2 |
| Corerctly calculate the radius of orbit of 55 cancri b | 1 |

(b)

| Criteria | Marks |
| :--- | :--- |
| Correct calculation of the ratio using Kepler's law of periods (441.71:1) | 2 |
| Determines the period of 55 Cancri d (6493.21 days) | 1 |

13. 

| Criteria | Marks |
| :--- | :--- |
| Uses an appropriate method to calculate a mass of $5.6 \times 1026 \mathrm{~kg}$ | 3 |
| Correctly method of calculation in kg but with one incorrect <br> substitution OR <br> Correct answer with incorrect units. | 2 |
| Correctly method of calculation but with two incorrect <br> substitutions. | 1 |

14. (a) $8.78 \mathrm{~m} / \mathrm{s}^{2} 1$ mark for correct number, 1 mark for correct unit
(b) $\mathrm{V}=\left(\frac{G m}{r}\right)^{\frac{1}{2}} \quad 1$ mark
= substitution line (no carry overs paid)
$=7690 \mathrm{~m} / \mathrm{s} \quad 1$ mark for correct value and unit
(c) $\mathrm{W}=E_{p_{\text {final }}}-E_{p_{\text {initial }}}$
$=-\frac{G m m}{r_{f}}--\frac{G m m}{r_{i}} \quad 1$ mark
$=$ substitution line 1 mark for correct answer and unit
$=4.67 \times 10^{9} \mathrm{~J}$

# HSC Physics - Module 5: Advanced Mechanics - Motion in Gravitational Fields Short Answer Question Solutions 2 

15. a)


NOT TO SCALE
All correct foo 1 mark
(b) Show your working
$\frac{r^{3}}{T^{2}}=\frac{G m}{4 \pi^{2}} \quad \leftarrow 1$ mark correct equation
$r^{3}=\frac{G m T^{2}}{4 \pi^{2}}$
$=\frac{\left(6.67 \times 10^{-11} \times 2 \times 10^{30} \times 9.9452 \times 10^{14}\right)}{4 \pi^{2}}$
$r^{3}=3.360542 \times 10^{33}$
$r=1.5 \times 10^{11} \mathrm{~m} \leqslant \max 3$ sig. figs (1 mark all correct)
$=1.5 \times 10^{8} \mathrm{~km}$
16. V necessary to escape Earth's gravitational field

1 mark
$V=\sqrt{\frac{2 G M}{r}}$
$=\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{6.4 \times 10^{6}}} \quad 1$ mark
$=11,183 \mathrm{~ms}^{-1} \quad 1 \mathrm{mark}$
17. (a) $1.44 \times 10^{6} \mathrm{~J}$
(b) $-3.245 \times 10^{6} \mathrm{~J}$
(c) $(\mathrm{a})+(\mathrm{b})=\frac{-6.67 \times 10^{-11} \times 1150 \times 1.1 \times 10^{20}}{r}(1$ mark $)$
$r=4.67 \times 10^{6} \mathrm{~m}$ (1 mark)
18. (a) $g=\frac{G M}{r^{2}}=0.83 \mathrm{~m} / \mathrm{s}^{2}$
(b) $T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}}$ (1 mark)
$T=3.24 \times 10^{4} \mathrm{~s}$ (9 hours) (1 mark)
(c) $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$ (or in words) (1 mark)

Hence $v=\sqrt{\frac{G M}{r}}$ which does not depend on the mass of the satellite. (1 mark)

## HSC Physics - Module 5: Advanced Mechanics - Motion in Gravitational Fields Short Answer Question Solutions 2

19. (a)

| Marking Criteria | Marks |
| :---: | :--- |
| $\bullet$ Correct effect at both locations described | 2 |
| $\bullet$ Correct effect at either location described | 1 |

Sample answer:
Length of day shorter thus rotation of Earth speeds up. Centripetal acceleration of $v^{2} / r$ must be subtracted from $9.8 \mathrm{~ms}^{-2}$. Thus effective "g" near equator is less, say $9.7 \mathrm{~ms}^{-2}$. No circular motion at south pole so no effect on value of " $g$ ". OR Faster $v$ gives equatorial bulge so $r$ increases so $g$ is less and at pole $r$ decreases so $g$ increases.
(b)

| Marking Criteria | Marks |
| :--- | :--- |
| $\bullet$ Both changes described | 2 |
| $\bullet$ One change described or both changes (period and radius) identified | 1 |

Sample answer:
Earth rotates faster so the satellite must also travel faster and thus it will have a shorter period to match that of the Earth. It will do so if drops to a lower orbit where "g" is greater and the speed increases to compensate.
20.

| Marking Criteria | Marks |
| :--- | :--- |
| - response provided shows evidence of proper and thorough understanding of |  |
| the concepts involved, | 4 |
| - presented in a logical manner |  |
| - appropriate energy formulae used correctly | 4 |
| - sound understanding of relevant factors and relationships evident <br> - appropriate energy formulae referred to | 3 |
| - basic understanding of the relevant factors and relationships evident, | 2 |
| - some appropriate formulae identified | Some understanding of a relevant concept evident |

Sample answer:

For a spacecraft to escape Earth's gravitational field PE $+\mathrm{KE}=0, \mathrm{EK}=1 / 2 m v^{2}$ and gravitational potential energy, $E P=-G m_{1} m_{2} / r$. This solves to give escape velocity $=$ root $2 \mathrm{Gm} / \mathrm{r}$. It needs to propel itself with sufficient fuel so that it can "climb up" to a potential energy of zero while still having kinetic energy and thus escape and not be drawn back by Earth's gravity.

